Environmental product declaration in accordance with ISO 14025 and EN 15804+A2 # Knauf KS6 LOWR - Renovation board The Norwegian EPD Foundation ## Owner of the declaration: Knauf Oy Finland #### **Product** Knauf KS6 LOWR - Renovation board #### **Declared unit:** 1 m² ## This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 010:2022 Part B for building boards ## **Program operator:** The Norwegian EPD Foundation # **Declaration number:** NEPD-11765-11735 # Registration number: NEPD-11765-11735 #### Issue date: 10.07.2025 ## Valid to: 10.07.2030 #### **EPD** software: LCAno EPD generator ID: 986677 #### **General information** **Product** Knauf KS6 LOWR - Renovation board Program operator: The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no **Declaration number:** NEPD-11765-11735 This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 010:2022 Part B for building boards Statement of liability: The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. **Declared unit:** 1 m2 Knauf KS6 LOWR - Renovation board Declared unit with option: A1-A3, A4, A5, C1, C2, C3, C4, D **Functional unit:** 1 m2 of manufactured plasterboard General information on verification of EPD from EPD tools: Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools **Verification of EPD tool:** Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Third party verifier: Elisabet Amat, GREENIZE projects (no signature required) Owner of the declaration: Knauf Oy Finland Contact person: Marjukka Eklund Phone e-mail: marjukka.eklund@knauf.com Manufacturer: Knauf Oy Finland Place of production: Knauf Oy Finland Bertel Jungin aukio 1 02600 Espoo, Finland Management system: ISO 9001; ISO 14001; ISO 45001 Organisation no: 0921271-2 Issue date: 10.07.2025 Valid to: 10.07.2030 Year of study: 2025 Comparability: EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context. **Development and verification of EPD:** The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. NEPDT96 Knauf Developer of EPD: Marjukka Eklund Reviewer of company-specific input data and EPD: Max Tollander Approved: Håkon Hauan, CEO EPD-Norge #### **Product** #### **Product description:** Knauf KS 6 LOWR is a standard renovation plasterboard for internal structures and surfaces in various building types such as residential, industrial, school, hospital and commercial. The boards follow the EN standards for fire, sound, thickness etc technical characteristics. Knauf board has gypsum core with additives and paper liner. #### **Product specification** Nominal thickness: 6 Thickness (mm): 6.5 Width (mm): 1200 – 900 Length: please see product catalogue Weight (kg/m²): 5.2 Packaging PE film 0,007 kg/m2 Packaging wood based supports 0,07 kg/m2 | Materials | Value | Unit | |--------------------|-------|------| | Gypsum | 84 | % | | Recycled materials | 13 | % | | Additives | 2 | % | | Package | 1 | % | #### Technical data: EN Classification 13 A, EN 520:2004+A1:2009 #### Market: Knauf KS6 LOWR board is manufactured and sold in Finland. It can also be distributed to other countries. #### Reference service life, product 60 years #### Reference service life, building or construction works 60 years ## LCA: Calculation rules #### **Declared unit:** 1 m2 Knauf KS6 LOWR - Renovation board #### **Cut-off criteria:** All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included when specific information are missing. These cut-off criteria do not apply for hazardous materials and substances. #### **Allocation:** The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis. ## Data quality: Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below. Data collection 1.1.2025-30.6.2025 | Materials | Source | Data quality | Year | |---------------------|------------------------|-------------------|------| | Additives | ecoinvent 3.10.1 | Database | 2023 | | Additives | ecoinvent 3.6 | Database | 2019 | | Adhesive | ecoinvent 3.6 | Database | 2019 | | Chemical | ecoinvent 3.6 | Database | 2019 | | Gypsum | Modified ecoinvent 3.6 | Database | 2019 | | Gypsum | Supplier | Supplier specific | 2019 | | Packaging - Plastic | ecoinvent 3.6 | Database | 2019 | | Packaging - Wood | ecoinvent 3.6 | Database | 2019 | | Recycled cardboard | Modified ecoinvent 3.6 | Database | 2019 | # System boundaries (X=included, MND=module not declared, MNR=module not relevant) | P | roduct stag | je | | ruction
ion stage | | | | Use stage | | | | End of life stage | | | Beyond the system boundaries | | |------------------|-------------|---------------|-----------|----------------------|-----|-------------|--------|-------------|----------------|------------------------------|--------------------------|-----------------------------------|-----------|---------------------|------------------------------|--| | Raw
materials | Transport | Manufacturing | Transport | Assembly | Use | Maintenance | Repair | Replacement | Refurb ishment | Operational
energy
use | Operational
water use | De-
construction
demolition | Transport | Waste
processing | Disposal | Reuse-Recovery-
Recycling-potential | | A1 | A2 | A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | C3 | C4 | D | | Χ | X | X | Χ | Χ | MND Χ | Χ | Χ | X | X | ## System boundary: Cradle to gate with options: A1-A5, C1-C4 and D Additional technical information: # LCA: Scenarios and additional technical information The following information describe the scenarios in the different modules of the EPD. tekstiä | Transport from production place to user (A4) | Capacity utilisation
(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit | Value
(Liter/tonne) | |--|--|---------------|-------------------------|-------|------------------------| | Truck, 60-64 ton gross weight, EURO 6 (kgkm) -
Finland - ecoinvent 3.10.1 | 50,0 % | 268 | 0,012 | l/tkm | 3,22 | | Assembly (A5) | Unit | Value | | | | | Waste of product in installation | Units/DU | 0,050 | | | | | Electricity, Finland (kWh) | kWh/DU | 0,0010 | | | | | Waste, packaging, plastic film (LDPE), to average treatment (kg) | kg | 0,0070 | | | | | Waste, packaging, wood beam, softwood, raw, dried, u=20%, average treatment (kg) | kg | 0,072 | | | | | De-construction demolition (C1) | Unit | Value | | | | | Default scenario from PCR - demolition and landfill | kg | 5,20 | | | | | Diesel, burned (MJ) | MJ | 0,18 | | | | | Transport to waste processing (C2) | Capacity utilisation
(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit | Value
(Liter/tonne) | | Truck, 60-64 ton gross weight, EURO 6 (kgkm) -
Finland - ecoinvent 3.10.1 | 50,0 % | 188 | 0,012 | l/tkm | 2,26 | | Disposal (C4) | Unit | Value | | | | | Landfilling of gypsum | kg | 5,20 | | | | | Benefits and loads beyond the system boundaries (D) | Unit | Value | | | | | Substitution of electricity (MJ) | MJ | 0,050 | | | | | Substitution of thermal energy, district heating (MJ) | МЈ | 0,75 | | | | #### **LCA: Results** The LCA results are presented below for the declared unit defined on page 2 of the EPD document. | Enviro | nmental impact | | | | | | | | | | |----------|----------------------------------|------------------------|-----------|----------|----------|----------|----------|----------|----------|-----------| | | Indicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | | GWP-total | kg CO ₂ -eq | 4,35E-01 | 1,16E-01 | 2,16E-01 | 1,71E-02 | 8,12E-02 | 5,54E-01 | 4,27E-02 | -4,55E-03 | | | GWP-fossil | kg CO ₂ -eq | 1,09E+00 | 1,15E-01 | 1,11E-01 | 1,71E-02 | 8,10E-02 | 0,00E+00 | 4,27E-02 | -4,39E-03 | | | GWP-biogenic | kg CO ₂ -eq | -6,57E-01 | 1,54E-04 | 1,04E-01 | 3,20E-06 | 1,08E-04 | 5,54E-01 | 4,98E-05 | -9,07E-06 | | | GWP-luluc | kg CO ₂ -eq | 3,89E-03 | 6,89E-05 | 2,36E-04 | 1,35E-06 | 4,83E-05 | 0,00E+00 | 1,05E-05 | -1,51E-04 | | Ö | ODP | kg CFC11 -eq | 1,79E-07 | 2,83E-09 | 2,09E-08 | 3,69E-09 | 1,99E-09 | 0,00E+00 | 1,61E-08 | -3,20E-04 | | Œ | АР | mol H+ -eq | 1,03E-02 | 4,06E-04 | 7,13E-04 | 1,79E-04 | 2,85E-04 | 0,00E+00 | 3,79E-04 | -3,62E-05 | | | EP-FreshWater | kg P -eq | 4,16E-05 | 1,16E-05 | 2,65E-06 | 6,22E-08 | 8,11E-06 | 0,00E+00 | 4,83E-07 | -3,90E-07 | | | EP-Marine | kg N -eq | 2,76E-03 | 1,25E-04 | 1,98E-04 | 7,89E-05 | 8,79E-05 | 0,00E+00 | 1,41E-04 | -1,18E-05 | | - | EP-Terrestial | mol N -eq | 2,94E-02 | 1,36E-03 | 2,09E-03 | 8,66E-04 | 9,56E-04 | 0,00E+00 | 1,56E-03 | -1,28E-04 | | | POCP | kg NMVOC -eq | 7,78E-03 | 7,16E-04 | 5,56E-04 | 2,38E-04 | 5,03E-04 | 0,00E+00 | 4,45E-04 | -3,53E-05 | | | ADP-minerals&metals ¹ | kg Sb-eq | 8,71E-06 | 2,83E-07 | 8,67E-07 | 2,62E-08 | 1,98E-07 | 0,00E+00 | 3,84E-07 | -4,37E-08 | | | ADP-fossil ¹ | MJ | 1,56E+01 | 1,95E+00 | 1,67E+00 | 2,35E-01 | 1,37E+00 | 0,00E+00 | 1,17E+00 | -6,28E-02 | | <u>%</u> | WDP ¹ | m ³ | 2,57E+01 | 1,35E-02 | 1,09E+01 | 5,00E-02 | 9,44E-03 | 0,00E+00 | 7,24E+00 | -7,82E-01 | GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption ## **Remarks to environmental impacts** [&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" ^{*}INA Indicator Not Assessed ^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator | Addition | al environme | ntal impact indicators | | | | | | | | | |----------|---------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|-----------| | In | dicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | | PM | Disease incidence | 4,75E-08 | 1,84E-08 | 5,39E-09 | 4,73E-09 | 1,29E-08 | 0,00E+00 | 8,10E-09 | -2,19E-09 | | | IRP ² | kgBq U235 -eq | 5,37E-02 | 3,41E-03 | 9,68E-03 | 1,01E-03 | 2,39E-03 | 0,00E+00 | 5,36E-03 | -4,01E-04 | | | ETP-fw ¹ | CTUe | 6,34E+01 | 3,12E-01 | 4,10E+00 | 1,29E-01 | 2,19E-01 | 0,00E+00 | 6,40E-01 | -3,42E-01 | | 40.* | HTP-c ¹ | CTUh | 3,83E-10 | 0,00E+00 | 4,10E-11 | 5,00E-12 | 0,00E+00 | 0,00E+00 | 2,60E-11 | -6,00E-12 | | 48 | HTP-nc ¹ | CTUh | 1,16E-08 | 1,42E-09 | 1,38E-09 | 1,18E-10 | 9,92E-10 | 0,00E+00 | 4,63E-10 | -3,28E-10 | | | SQP ¹ | dimensionless | 1,14E+01 | 4,23E+00 | 1,15E+00 | 2,99E-02 | 2,97E+00 | 0,00E+00 | 4,52E+00 | -4,20E-01 | PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless) [&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed ^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the ^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator. | Resource use | | | | | | | | | | | |--------------|----------|-------|----------|----------|-----------|----------|----------|-----------|----------|-----------| | | ndicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | i ji | PERE | MJ | 1,45E+01 | 4,48E-02 | 4,14E-01 | 1,27E-03 | 3,14E-02 | 0,00E+00 | 4,20E-02 | -3,88E-01 | | | PERM | MJ | 3,03E+00 | 0,00E+00 | -9,57E-01 | 0,00E+00 | 0,00E+00 | -2,02E+00 | 0,00E+00 | 0,00E+00 | | ್ಕ್ಯ | PERT | МЈ | 1,75E+01 | 4,48E-02 | -5,43E-01 | 1,27E-03 | 3,14E-02 | -2,02E+00 | 4,20E-02 | -3,88E-01 | | | PENRE | МЈ | 1,48E+01 | 2,48E+00 | 1,63E+00 | 2,35E-01 | 1,74E+00 | 0,00E+00 | 1,17E+00 | -6,28E-02 | | el. | PENRM | МЈ | 1,01E+00 | 0,00E+00 | -2,77E-01 | 0,00E+00 | 0,00E+00 | -7,09E-01 | 0,00E+00 | 0,00E+00 | | IA | PENRT | МЈ | 1,58E+01 | 2,48E+00 | 1,35E+00 | 2,35E-01 | 1,74E+00 | -7,09E-01 | 1,17E+00 | -6,28E-02 | | | SM | kg | 1,56E+00 | 0,00E+00 | 9,79E-02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | | RSF | МЈ | 1,95E-02 | 7,03E-06 | 1,98E-03 | 3,13E-05 | 4,93E-06 | 0,00E+00 | 8,72E-04 | -6,79E-05 | | | NRSF | МЈ | 1,98E-02 | 0,00E+00 | 4,39E-03 | 4,61E-04 | 0,00E+00 | 0,00E+00 | 1,88E-03 | -2,30E-02 | | % | FW | m^3 | 7,65E-02 | 4,23E-04 | 1,03E-03 | 1,21E-05 | 2,96E-04 | 0,00E+00 | 1,44E-03 | -4,67E-04 | PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water [&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed | End of life - Was | ste | | | | | | | | | | |-------------------|---------|------|----------|----------|----------|----------|----------|----------|----------|-----------| | Inc | dicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | ā | HWD | kg | 8,95E-03 | 3,41E-03 | 3,23E-04 | 6,93E-06 | 2,39E-03 | 0,00E+00 | 0,00E+00 | -2,95E-06 | | Ū | NHWD | kg | 2,02E-01 | 6,84E-02 | 3,60E-01 | 2,79E-04 | 4,80E-02 | 0,00E+00 | 5,20E+00 | -1,48E-03 | | 8 | RWD | kg | 7,35E-05 | 0,00E+00 | 9,88E-06 | 1,63E-06 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -3,29E-07 | HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed "Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed | End of life - Outpu | ıt flow | | | | | | | | | | |---------------------|---------|------|----------|----------|----------|----------|----------|----------|----------|----------| | Indicat | tor | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | ∅ D | CRU | kg | 0,00E+00 | \$>> | MFR | kg | 5,80E-03 | 0,00E+00 | 3,83E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | DF | MER | kg | 5,90E-03 | 0,00E+00 | 7,23E-02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | 50 | EEE | MJ | 4,15E-03 | 0,00E+00 | 5,03E-02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | D. | EET | MJ | 6,27E-02 | 0,00E+00 | 7,61E-01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal "Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed | Biogenic Carbon Content | | | | | | | | | | | |-------------------------|--|--|--|--|--|--|--|--|--|--| | it At the factory gate | | | | | | | | | | | | C 1,51E-01 | | | | | | | | | | | | C 3,00E-02 | Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2 ## **Additional requirements** ## Greenhouse gas emissions from the use of electricity in the manufacturing phase National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3). | Electricity mix | Source | Amount | Unit | |--|------------------|--------|--------------| | Electricity, hydro power, Norway (kWh) | ecoinvent 3.10.1 | 6,53 | g CO2-eg/kWh | ## **Dangerous substances** The product contains no substances given by the REACH Candidate list. #### **Indoor environment** ## **Additional Environmental Information** | Additional environmer | ntal impact indicators req | uired in NP | CR Part A | for constru | ction prod | ucts | | | | | | |-----------------------|--|-------------|-----------|-------------|------------|----------|----------|----------|-----------|--|--| | Indicator | Indicator Unit A1-A3 A4 A5 C1 C2 C3 C4 D | | | | | | | | | | | | GWPIOBC | kg CO ₂ -eq | 1,11E+00 | 1,16E-01 | 1,14E-01 | 1,71E-02 | 8,11E-02 | 0,00E+00 | 4,27E-02 | -4,49E-03 | | | GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation. ## **Bibliography** ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures. ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines. EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products. ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories. Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Vold, M. et al. (2022) EPD generator for Building boards Background information for EPD generator application and LCA data, LCA.no report number 05.22 NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge. NPCR 010 Part B for Building Boards. Ver. 4.0, March 2022, EPD-Norge. | @ and navas | Program operator and publisher | Phone: | +47 977 22 020 | |-------------------------|---|---------|---------------------------| | © epd-norge | The Norwegian EPD Foundation | e-mail: | post@epd-norge.no | | Global program operatør | Post Box 5250 Majorstuen, 0303 Oslo, Norway | web: | www.epd-norge.no | | | Owner of the declaration: | Phone: | | | KNAUF | Knauf Oy Finland | e-mail: | marjukka.eklund@knauf.com | | | Bertel Jungin aukio 1, 02600 Espoo, Finland | web: | https://knauf.fi/etusivu | | LCA | Author of the Life Cycle Assessment | Phone: | +47 916 50 916 | | | LCA.no AS | e-mail: | post@lca.no | | | Dokka 6A, 1671 Kråkerøy, Norway | web: | www.lca.no | | (LCA) | Developer of EPD generator | Phone: | +47 916 50 916 | | | LCA.no AS | e-mail: | post@lca.no | | no | Dokka 6A, 1671 Kråkerøy, Norway | web: | www.lca.no | | ECO PLATFORM | ECO Platform | web: | www.eco-platform.org | | VERIFIED | ECO Portal | web: | ECO Portal | | VERIFIED | | | |